Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Viruses ; 15(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37632016

RESUMO

Rabies virus (RABV) causes possibly the oldest disease and is responsible for an estimated >59,000 human fatalities/year. Post exposure prophylaxis (PEP), the administration of vaccine and rabies immunoglobulin, is a highly effective tool which is frequently unavailable in RABV endemic areas. Furthermore, due to the constraints of the blood-brain barrier, current PEP regimes are ineffective after the onset of clinical symptoms which invariably result in death. To circumvent this barrier, a live-attenuated recombinant RABV expressing a highly RABV-neutralising scFv antibody (62-71-3) linked to the fluorescent marker mCherry was designed. Once rescued, the resulting construct (named RABV-62scFv) was grown to high titres, its growth and cellular dissemination kinetics characterised, and the functionality of the recombinant 62-71-3 scFv assessed. Encouraging scFv production and subsequent virus neutralisation results demonstrate the potential for development of a therapeutic live-attenuated virus-based post-infection treatment (PIT) for RABV infection.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Humanos , Raiva/prevenção & controle , Vírus da Raiva/genética , Anticorpos , Transporte Biológico
2.
J Virol Methods ; 319: 114769, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37391076

RESUMO

Rabies virus (RABV) causes a fatal encephalitis that can be prevented through timely vaccination. The levels of virus neutralising antibodies against rabies virus induced by vaccination can be measured using the fluorescent antibody virus neutralisation (FAVN) test. Following incubation of live virus with sera, this method involves the fixation of cell monolayers and staining of rabies virus-specific antigen using fluorescein isothiocyanate (FITC) -conjugated antibody to enable visualisation of rabies virus antigen using a fluorescence microscope. To simplify this procedure, a fluorescent recombinant rabies virus was constructed using reverse genetics by inserting the gene for the mCherry fluorescent protein in front of the ribonucleoprotein gene of the SAD B-19 genome and replacing its glycoprotein with that of the Challenge Virus Standard (CVS)-11 RABV strain to ensure antigenic authenticity with the FAVN. This new recombinant virus (termed mCCCG) expressed the mCherry protein to high levels enabling direct observation of infected cells. In vitro growth kinetics of mCCCG were indistinguishable from that of CVS-11. The stability of the recombinant virus was assessed by sequencing several passages of the rescued virus and only minor changes were detected. Comparative assessment of the virus neutralisation test using mCherry producing virus (NTmCV) against the FAVN demonstrated that test results were equivalent to each other; therefore, mCCCG can be used as an alternative to CVS-11 for measuring antibody titres against the rabies virus. The use of NTmCV removes the need for expensive antibody conjugates and significantly reduces assay time. This would be particularly beneficial for RABV serological assessment in resource limited settings. Moreover, the reading of the plates can be automatically using a cell imaging reader.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Humanos , Vírus da Raiva/genética , Anticorpos Antivirais , Testes de Neutralização/métodos , Antígenos Virais , Anticorpos Neutralizantes
3.
Elife ; 122023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227428

RESUMO

Background: Dog-mediated rabies is endemic across Africa causing thousands of human deaths annually. A One Health approach to rabies is advocated, comprising emergency post-exposure vaccination of bite victims and mass dog vaccination to break the transmission cycle. However, the impacts and cost-effectiveness of these components are difficult to disentangle. Methods: We combined contact tracing with whole-genome sequencing to track rabies transmission in the animal reservoir and spillover risk to humans from 2010 to 2020, investigating how the components of a One Health approach reduced the disease burden and eliminated rabies from Pemba Island, Tanzania. With the resulting high-resolution spatiotemporal and genomic data, we inferred transmission chains and estimated case detection. Using a decision tree model, we quantified the public health burden and evaluated the impact and cost-effectiveness of interventions over a 10-year time horizon. Results: We resolved five transmission chains co-circulating on Pemba from 2010 that were all eliminated by May 2014. During this period, rabid dogs, human rabies exposures and deaths all progressively declined following initiation and improved implementation of annual islandwide dog vaccination. We identified two introductions to Pemba in late 2016 that seeded re-emergence after dog vaccination had lapsed. The ensuing outbreak was eliminated in October 2018 through reinstated islandwide dog vaccination. While post-exposure vaccines were projected to be highly cost-effective ($256 per death averted), only dog vaccination interrupts transmission. A combined One Health approach of routine annual dog vaccination together with free post-exposure vaccines for bite victims, rapidly eliminates rabies, is highly cost-effective ($1657 per death averted) and by maintaining rabies freedom prevents over 30 families from suffering traumatic rabid dog bites annually on Pemba island. Conclusions: A One Health approach underpinned by dog vaccination is an efficient, cost-effective, equitable, and feasible approach to rabies elimination, but needs scaling up across connected populations to sustain the benefits of elimination, as seen on Pemba, and for similar progress to be achieved elsewhere. Funding: Wellcome [207569/Z/17/Z, 095787/Z/11/Z, 103270/Z/13/Z], the UBS Optimus Foundation, the Department of Health and Human Services of the National Institutes of Health [R01AI141712] and the DELTAS Africa Initiative [Afrique One-ASPIRE/DEL-15-008] comprising a donor consortium of the African Academy of Sciences (AAS), Alliance for Accelerating Excellence in Science in Africa (AESA), the New Partnership for Africa's Development Planning and Coordinating (NEPAD) Agency, Wellcome [107753/A/15/Z], Royal Society of Tropical Medicine and Hygiene Small Grant 2017 [GR000892] and the UK government. The rabies elimination demonstration project from 2010-2015 was supported by the Bill & Melinda Gates Foundation [OPP49679]. Whole-genome sequencing was partially supported from APHA by funding from the UK Department for Environment, Food and Rural Affairs (Defra), Scottish government and Welsh government under projects SEV3500 and SE0421.


Assuntos
Mordeduras e Picadas , Doenças do Cão , Vacina Antirrábica , Raiva , Cães , Animais , Humanos , Raiva/epidemiologia , Raiva/prevenção & controle , Raiva/veterinária , Busca de Comunicante , Análise Custo-Benefício , Vacina Antirrábica/genética , Tanzânia/epidemiologia , Genômica , Mordeduras e Picadas/epidemiologia , Doenças do Cão/epidemiologia , Doenças do Cão/prevenção & controle
4.
Pharmaceutics ; 15(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37242595

RESUMO

Infection with the rabies virus (RABV) results in a 100% lethal neurological disease once symptoms develop. Post-exposure prophylaxis (PEP) consists of a combination of vaccination and anti-rabies immunoglobulins (RIGs); it is 100% effective if administered early after exposure. Because of its limited availability, alternatives for RIGs are needed. To that end, we evaluated a panel of 33 different lectins for their effect on RABV infection in cell culture. Several lectins, with either mannose or GlcNAc specificity, elicited anti-RABV activity, of which the GlcNAc-specific Urtica dioica agglutinin (UDA) was selected for further studies. UDA was found to prevent the entry of the virus into the host cell. To further assess the potential of UDA, a physiologically relevant RABV infection muscle explant model was developed. Strips of dissected swine skeletal muscle that were kept in a culture medium could be productively infected with the RABV. When the infection of the muscle strips was carried out in the presence of UDA, RABV replication was completely prevented. Thus, we developed a physiologically relevant RABV muscle infection model. UDA (i) may serve as a reference for further studies and (ii) holds promise as a cheap and simple-to-produce alternative for RIGs in PEP.

5.
Vaccines (Basel) ; 11(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37112668

RESUMO

Rabies is a disease of antiquity and has a history spanning millennia ever since the first interactions between humans and dogs. The alarming fatalities caused by this disease have triggered rabies prevention strategies since the first century BC. There have been numerous attempts over the past 100 years to develop rabies vaccineswith the goal of preventing rabies in both humans and animals. Thepre-Pasteurian vaccinologists, paved the way for the actual history of rabies vaccines with the development of first generation vaccines. Further improvements for less reactive and more immunogenic vaccines have led to the expansion of embryo vaccines, tissue culture vaccines, cell culture vaccines, modified live vaccines, inactivated vaccines, and adjuvanted vaccines. The adventof recombinant technology and reverse genetics have given insight into the rabies viral genome and facilitated genome manipulations, which in turn led to the emergence of next-generation rabies vaccines, such as recombinant vaccines, viral vector vaccines, genetically modified vaccines, and nucleic acid vaccines. These vaccines were very helpful in overcoming the drawbacks of conventional rabies vaccines with increased immunogenicity and clinical efficacies. The path traversed in the development of rabies vaccines from Pasteur to the modern era vaccines, though, faced numerous challenges;these pioneering works have formed the cornerstone for the generation of thecurrent successful vaccines to prevent rabies. In the future, advancements in the scientific technologies and research focus will definitely lay the path for much more sophisticated vaccine candidates for rabies elimination.

6.
Viruses ; 14(12)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36560754

RESUMO

Rabies is a neglected tropical disease. The prototype virus, the rabies virus, still causes tens of thousands of human fatalities annually. Rabies is one member of the genus Lyssavirus. The burden of other lyssaviruses is unclear. The continued emergence of novel lyssaviruses means that assessment of vaccine efficacy against these viruses is critical, as standard rabies vaccines are not efficacious against all lyssaviruses. Taiwan bat lyssavirus (TWBLV) was first reported in 2018 following isolation from Japanese house bats. Since the initial detection and genetic characterisation, no attempts have been made to antigenically define this virus. Due to the inaccessibility of the wildtype isolate, the successful generation of a live recombinant virus, cSN-TWBLV, is described, where the full-length genome clone of the RABV vaccine strain, SAD-B19, was constructed with the glycoprotein of TWBLV. In vitro and in vivo characterization of cSN-TWBLV was undertaken and demonstrated evidence for cross-neutralisation of cSN-TWBLV with phylogroup I -specific sera and rabies virus standard sera. For neutralisation equivalent to 0.5 IU/mL of WHO and World Organisation of Animal Health (WOAH) sera against CVS, 0.5 IU/mL of WOAH sera and 2.5 IU/mL of WHO sera were required to neutralise cSN-TWBLV. In addition, specific sera for ARAV and EBLV-1 exhibited the highest neutralising antibody titres against cSN-TWBLV, compared to other phylogroup I-specific sera.


Assuntos
Quirópteros , Lyssavirus , Vacina Antirrábica , Vírus da Raiva , Raiva , Infecções por Rhabdoviridae , Animais , Humanos , Raiva/prevenção & controle , Raiva/veterinária , Taiwan , Anticorpos Antivirais , Infecções por Rhabdoviridae/prevenção & controle , Infecções por Rhabdoviridae/veterinária , Vírus da Raiva/genética
7.
J Extracell Vesicles ; 11(11): e12247, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36377074

RESUMO

Vaccine platforms enable fast development, testing, and manufacture of more affordable vaccines. Here, we evaluated Generalized Modules for Membrane Antigens (GMMA), outer membrane vesicles (OMVs) generated by genetically modified Gram-negative bacteria, as a vaccine platform for viral pathogens. Influenza A virus hemagglutinin (HA), either physically mixed with GMMA (HA+STmGMMA mix), or covalently linked to GMMA surface (HA-STmGMMA conjugate), significantly increased antigen-specific humoral and cellular responses, with HA-STmGMMA conjugate inducing further enhancement than HA+STmGMMA mix. HA-STmGMMA conjugate protected mice from lethal challenge. The versatility for this platform was confirmed by conjugation of rabies glycoprotein (RABVG) onto GMMA through the same method. RABVG+STmGMMA mix and RABVG-STmGMMA conjugate exhibited similar humoral and cellular response patterns and protection efficacy as the HA formulations, indicating relatively consistent responses for different vaccines based on the GMMA platform. Comparing to soluble protein, GMMA was more efficiently taken up in vivo and exhibited a B-cell preferential uptake in the draining lymph nodes (LNs). Together, GMMA enhances immunity against viral antigens, and the platform works well with different antigens while retaining similar immunomodulatory patterns. The findings of our study imply the great potential of GMMA-based vaccine platform also against viral infectious diseases.


Assuntos
Antígenos Virais , Vacinas , Camundongos , Animais , Membranas
8.
Adv Virus Res ; 112: 115-173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35840180

RESUMO

Rabies infects all mammals; however, transmission cycles are only maintained in certain bat and carnivore species. The high incidence of rabies in Greater Kudu (Tragelaphus strepsiceros) observed in Namibia for over 40 years has led to postulation that independent virus transmission is occurring within this antelope population. We have analysed extensive experimental, epidemiological, phylogeographic and deep sequence data, which collectively refute maintenance of an independent rabies cycle in kudu. As rabies in kudu continues to have a negative impact on the Namibian agricultural sector, measures to protect kudu have been investigated, including the use of a third-generation oral rabies vaccine. Initial results show protection of kudu from rabies infection via the oral route, with an appropriate bait design, different application schedules and vaccination doses further enhancing the immune response. Rabies in kudu is a complex interplay at the wildlife-livestock interface and requires a concerted approach to successfully control.


Assuntos
Antílopes , Vacina Antirrábica , Vírus da Raiva , Raiva , Animais , Animais Selvagens , Antílopes/fisiologia , Raiva/epidemiologia , Raiva/prevenção & controle , Raiva/veterinária , Vírus da Raiva/genética
9.
Sci Rep ; 12(1): 10298, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717348

RESUMO

Following the first detection in the United Kingdom of Usutu virus (USUV) in wild birds in 2020, we undertook a multidisciplinary investigation that combined screening host and vector populations with interrogation of national citizen science monitoring datasets to assess the potential for population impacts on avian hosts. Pathological findings from six USUV-positive wild passerines were non-specific, highlighting the need for molecular and immunohistochemical examinations to confirm infection. Mosquito surveillance at the index site identified USUV RNA in Culex pipiens s.l. following the outbreak. Although the Eurasian blackbird (Turdus merula) is most frequently impacted by USUV in Europe, national syndromic surveillance failed to detect any increase in occurrence of clinical signs consistent with USUV infection in this species. Furthermore, there was no increase in recoveries of dead blackbirds marked by the national ringing scheme. However, there was regional clustering of blackbird disease incident reports centred near the index site in 2020 and a contemporaneous marked reduction in the frequency with which blackbirds were recorded in gardens in this area, consistent with a hypothesis of disease-mediated population decline. Combining results from multidisciplinary schemes, as we have done, in real-time offers a model for the detection and impact assessment of future disease emergence events.


Assuntos
Doenças das Aves , Infecções por Flavivirus , Flavivirus , Aves Canoras , Animais , Surtos de Doenças/veterinária , Flavivirus/genética , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterinária , Mosquitos Vetores , Reino Unido/epidemiologia
10.
J Gen Virol ; 103(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35723908

RESUMO

The family Rhabdoviridae comprises viruses with negative-sense (-) RNA genomes of 10-16 kb. Virions are typically enveloped with bullet-shaped or bacilliform morphology but can also be non-enveloped filaments. Rhabdoviruses infect plants or animals, including mammals, birds, reptiles, amphibians or fish, as well as arthropods, which serve as single hosts or act as biological vectors for transmission to animals or plants. Rhabdoviruses include important pathogens of humans, livestock, fish or agricultural crops. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Rhabdoviridae, which is available at ictv.global/report/rhabdoviridae.


Assuntos
Rhabdoviridae , Animais , Aves , Peixes , Genoma Viral , Mamíferos , Répteis , Rhabdoviridae/genética , Vírion , Replicação Viral
11.
Artigo em Inglês | MEDLINE | ID: mdl-35627370

RESUMO

Where ticks are found, tick-borne diseases can present a threat to human and animal health. The aetiology of many of these important diseases, including Lyme disease, bovine babesiosis, tick-borne fever and louping ill, have been known for decades whilst others have only recently been documented in the United Kingdom (UK). Further threats such as the importation of exotic ticks through human activity or bird migration, combined with changes to either the habitat or climate could increase the risk of tick-borne disease persistence and transmission. Prevention of tick-borne diseases for the human population and animals (both livestock and companion) is dependent on a thorough understanding of where and when pathogen transmission occurs. This information can only be gained through surveillance that seeks to identify where tick populations are distributed, which pathogens are present within those populations, and the periods of the year when ticks are active. To achieve this, a variety of approaches can be applied to enhance knowledge utilising a diverse range of stakeholders (public health professionals and veterinarians through to citizen scientists). Without this information, the application of mitigation strategies to reduce pathogen transmission and impact is compromised and the ability to monitor the effects of climate change or landscape modification on the risk of tick-borne disease is more challenging. However, as with many public and animal health interventions, there needs to be a cost-benefit assessment on the most appropriate intervention applied. This review will assess the challenges of tick-borne diseases in the UK and argue for a cross-disciplinary approach to their surveillance and control.


Assuntos
Doença de Lyme , Saúde Única , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Doença de Lyme/epidemiologia , Doença de Lyme/prevenção & controle , Doenças Transmitidas por Carrapatos/epidemiologia , Reino Unido/epidemiologia
12.
Vector Borne Zoonotic Dis ; 22(2): 120-137, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175140

RESUMO

Nowadays, there is a lack of information on the mosquito's fauna and DNA barcoding sequence reference library from many areas in Mexico, including the Volcanoes of Central America physiographic subprovince in the state of Chiapas. Consequently, a survey was undertaken to delineate the mosquito (Diptera: Culicidae) fauna in this region across different seasons using different collecting techniques. All species were identified by morphology and DNA barcoding, and their ecological features were also defined. In total, 62 taxa were morphologically examined, 60 of these were successfully identified based on morphological characteristics, but two were unable to be identified at the species level. The genera Aedes, Anopheles, Culex, and Wyeomyia are the most diverse among mosquito genera collected and include several species of medical and veterinary importance. Ecological characteristics of the immature habitats indicated that they were grouped into four categories namely, (1) large water bodies at ground level, (2) small and shady phytotelmata (e.g., tree holes and bamboo internodes), (3) large phytotelmata (e.g., plant leaves and axis bromeliad), and (4) artificial containers. The cytochrome c oxidase subunit I (COI) DNA barcoding sequences successfully separated the majority of these species, although specific species showed >2% intraspecific genetic divergences.


Assuntos
Aedes , Anopheles , Culex , Culicidae , Animais , Ecossistema , México
13.
J Gen Virol ; 103(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36748502

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) in humans, has a wide host range, naturally infecting felids, canids, cervids, rodents and mustelids. Transmission of SARS-CoV-2 is universally accepted to occur via contact with contaminated secretions from the respiratory epithelium, either directly or indirectly. Transmission via droplet nuclei, generated from a cough or sneeze, has also been reported in several human and experimental animal scenarios. However, the role of droplet transmission at the human-animal interface remains to be fully elucidated. Here, the ferret infection model was used to investigate the routes of infection for the SARS-CoV-2 beta variant (B.1.351). Ferrets were exposed to droplets containing infectious SARS-CoV-2, ranging between 4 and 106 µm in diameter, simulating larger droplets produced by a cough from an infected person. Following exposure, viral RNA was detected on the fur of ferrets, and was deposited onto environmental surfaces, as well as the fur of ferrets placed in direct contact; SARS-CoV-2 remained infectious on the fur for at least 48 h. Low levels of viral RNA were detected in the nasal washes early post-exposure, yet none of the directly exposed, or direct-contact ferrets, became robustly infected or seroconverted to SARS-CoV-2. In comparison, ferrets intranasally inoculated with the SARS-CoV-2 beta variant became robustly infected, shedding viral RNA and infectious virus from the nasal cavity, with transmission to 75 % of naive ferrets placed in direct contact. These data suggest that larger infectious droplet nuclei and contaminated fur play minor roles in SARS-CoV-2 transmission among mustelids and potentially other companion animals.


Assuntos
COVID-19 , Animais , Humanos , SARS-CoV-2 , Furões , Tosse , Partículas e Gotas Aerossolizadas , RNA Viral/genética
14.
Transbound Emerg Dis ; 69(4): 2275-2286, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34245662

RESUMO

Angiotensin converting enzyme 2 (ACE2) is a host cell membrane protein (receptor) that mediates the binding of coronavirus, most notably SARS coronaviruses in the respiratory and gastrointestinal tracts. Although SARS-CoV-2 infection is mainly confined to humans, there have been numerous incidents of spillback (reverse zoonoses) to domestic and captive animals. An absence of information on the spatial distribution of ACE2 in animal tissues limits our understanding of host species susceptibility. Here, we describe the distribution of ACE2 using immunohistochemistry (IHC) on histological sections derived from carnivores, ungulates, primates and chiroptera. Comparison of mink (Neovison vison) and ferret (Mustela putorius furo) respiratory tracts showed substantial differences, demonstrating that ACE2 is present in the lower respiratory tract of mink but not ferrets. The presence of ACE2 in the respiratory tract in some species was much more restricted as indicated by limited immunolabelling in the nasal turbinate, trachea and lungs of cats (Felis catus) and only the nasal turbinate in the golden Syrian hamster (Mesocricetus auratus). In the lungs of other species, ACE2 could be detected on the bronchiolar epithelium of the sheep (Ovis aries), cattle (Bos taurus), European badger (Meles meles), cheetah (Acinonyx jubatus), tiger and lion (Panthera spp.). In addition, ACE2 was present in the nasal mucosa epithelium of the serotine bat (Eptesicus serotinus) but not in pig (Sus scrofa domestica), cattle or sheep. In the intestine, ACE2 immunolabelling was seen on the microvillus of enterocytes (surface of intestine) across various taxa. These results provide anatomical evidence of ACE2 expression in a number of species which will enable further understanding of host susceptibility and tissue tropism of ACE2 receptor-mediated viral infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Receptores Virais , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Animais Selvagens , COVID-19/veterinária , Doenças do Gato , Gatos , Bovinos , Doenças dos Bovinos , Quirópteros , Furões , Gado , Vison , Animais de Estimação , Receptores Virais/metabolismo , SARS-CoV-2 , Ovinos , Doenças dos Ovinos , Glicoproteína da Espícula de Coronavírus/metabolismo , Sus scrofa
15.
Viruses ; 13(12)2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34960647

RESUMO

Lagos bat lyssavirus (LBV) comprising four lineages (A, B, C and D) can potentially cause the fatal disease rabies. Although LBV-B was initially isolated in Nigeria in 1956, there is no information on LBV lineages circulating in Nigeria. This study was undertaken for the first time to measure the neutralizing antibodies against four lineages of LBVs in straw-colored fruit bats (Eidolon helvum) in Makurdi, Nigeria. Serum samples (n = 180) collected during two periods (November 2017-March 2018 and November 2018-March 2019) from terminally bled bats captured for human consumption were tested using a modified fluorescent antibody virus neutralization (mFAVN) assay. A high proportion of bat sera (74%) neutralized at least one lineage of LBV (with reciprocal titers from 9 to >420.89) and most of them neutralized LBV-A (63%), followed by LBV-D (49%), LBV-C (45%) and LBV-B (24%). The majority of positive sera (75%, n = 100) neutralized multiple LBV lineages while the remaining 25% (n = 33) neutralized only a single lineage, i.e., LBV-A (n = 23), LBV-D (n = 8) and LBV-C (n = 2). None exclusively neutralized LBV-B. The results suggest that exposure to LBV is common in E. helvum and that LBV-A (but not LBV-B) is likely to be circulating in this region of Nigeria.


Assuntos
Anticorpos Antivirais/sangue , Quirópteros/virologia , Lyssavirus/imunologia , Raiva/virologia , Infecções por Rhabdoviridae/virologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Lyssavirus/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Nigéria/epidemiologia
16.
J Am Mosq Control Assoc ; 37(4): 198-207, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34817614

RESUMO

Accurate identification of mosquito species is essential to support programs that involve the study of distribution and mosquito control. Numerous mosquito species are difficult to identify based only on morphological characteristics, due to the morphological similarities in different life stages and large numbers of some species that are members of morphologically similar species complexes. In the present study, the mosquitoes collected in the Pantanos de Centla Biosphere Reserve, southeastern Mexico, were evaluated using a combination of morphological and molecular approaches (mitochondrial cytochrome c oxidase subunit I [COI] DNA barcode). A total of 1,576 specimens of 10 genera and 35 species, mostly adult stages, were collected. A total of 225 COI DNA barcode sequences were analyzed; most species formed well-supported groups in the neighbor joining, maximum likelihood, and Bayesian inference trees. The intraspecific Kimura 2-parameter (K2P) genetic distance averaged 1.52%. An intraspecific K2P distance of 6.20% was observed in Anopheles crucians s.l., while a deep split was identified in Culex erraticus and Cx. conspirator. This study showed that COI DNA barcodes offer a reliable approach to support mosquito species identification in Mexico.


Assuntos
Culex , Código de Barras de DNA Taxonômico , Animais , Teorema de Bayes , Culex/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , México , Filogenia
17.
Parasit Vectors ; 14(1): 566, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732254

RESUMO

BACKGROUND: A number of zoonotic mosquito-borne viruses have emerged in Europe in recent decades. Batai virus (BATV), a member of the genus Orthobunyavirus, is one example of a relatively newly emerged mosquito-borne virus, having been detected in mosquitoes and livestock. We conducted vector competency studies on three mosquito species at a low temperature to assess whether Aedes and Culex mosquito species are susceptible to infection with BATV. METHODS: Colonised lines of Aedes aegypti and Culex pipiens and a wild-caught species, Aedes detritus, were orally inoculated with BATV strain 53.2, originally isolated from mosquitoes trapped in Germany in 2009. Groups of blood-fed female mosquitoes were maintained at 20 °C for 7 or 14 days. Individual mosquitoes were screened for the presence of BATV in body, leg and saliva samples for evidence of infection, dissemination and transmission, respectively. BATV RNA was detected by reverse transcription-PCR, and positive results confirmed by virus isolation in Vero cells. RESULTS: Aedes detritus was highly susceptible to BATV, with an infection prevalence of ≥ 80% at both measurement time points. Disseminated infections were recorded in 30.7-41.6% of Ae. detritus, and evidence of virus transmission with BATV in saliva samples (n = 1, days post-infection: 14) was observed. Relatively lower rates of infection for Ae. aegypti and Cx. pipiens were observed, with no evidence of virus dissemination or transmission at either time point. CONCLUSIONS: This study shows that Ae. detritus may be a competent vector for BATV at 20 °C, whereas Ae. aegypti and Cx. pipiens were not competent. Critically, the extrinsic incubation period appears to be ≤ 7 days for Ae. detritus, which may increase the onward transmissibility potential of BATV in these populations.


Assuntos
Vírus Bunyamwera/fisiologia , Culicidae/virologia , Mosquitos Vetores/virologia , Animais , Vírus Bunyamwera/genética , Infecções por Bunyaviridae/transmissão , Infecções por Bunyaviridae/virologia , Culicidae/imunologia , Europa (Continente) , Feminino , Humanos , Masculino , Mosquitos Vetores/imunologia , Saliva/virologia
18.
Viruses ; 13(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34696409

RESUMO

Lyssaviruses are an important genus of zoonotic viruses which cause the disease rabies. The United Kingdom is free of classical rabies (RABV). However, bat rabies due to European bat lyssavirus 2 (EBLV-2), has been detected in Daubenton's bats (Myotis daubentonii) in Great Britain since 1996, including a fatal human case in Scotland in 2002. Across Europe, European bat lyssavirus 1 (EBLV-1) is commonly associated with serotine bats (Eptesicus serotinus). Despite the presence of serotine bats across large parts of southern England, EBLV-1 had not previously been detected in this population. However, in 2018, EBLV-1 was detected through passive surveillance in a serotine bat from Dorset, England, using a combination of fluorescent antibody test, reverse transcription-PCR, Sanger sequencing and immunohistochemical analysis. Subsequent EBLV-1 positive serotine bats have been identified in South West England, again through passive surveillance, during 2018, 2019 and 2020. Here, we confirm details of seven cases of EBLV-1 and present similarities in genetic sequence indicating that emergence of EBLV-1 is likely to be recent, potentially associated with the natural movement of bats from the near continent.


Assuntos
Quirópteros/virologia , Lyssavirus/patogenicidade , Animais , Lyssavirus/genética , Raiva/virologia , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/virologia , Reino Unido/epidemiologia
19.
Viruses ; 13(9)2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34578350

RESUMO

Pathogen discovery contributes to our knowledge of bat-borne viruses and is linked to the heightened interest globally in bats as recognised reservoirs of zoonotic agents. The transmission of lyssaviruses from bats-to-humans, domestic animals, or other wildlife species is uncommon, but interest in these pathogens remains due to their ability to cause an acute, progressive, invariably fatal encephalitis in humans. Consequently, the detection and characterisation of bat lyssaviruses continues to expand our knowledge of their phylogroup definition, viral diversity, host species association, geographical distribution, evolution, mechanisms for perpetuation, and the potential routes of transmission. Although the opportunity for lyssavirus cross-species transmission seems rare, adaptation in a new host and the possibility of onward transmission to humans requires continued investigation. Considering the limited efficacy of available rabies biologicals it is important to further our understanding of protective immunity to minimize the threat from these pathogens to public health. Hence, in addition to increased surveillance, the development of a niche pan-lyssavirus vaccine or therapeutic biologics for post-exposure prophylaxis for use against genetically divergent lyssaviruses should be an international priority as these emerging lyssaviruses remain a concern for global public health.


Assuntos
Saúde Pública , Infecções por Rhabdoviridae/terapia , Animais , Quirópteros/virologia , Encefalite/terapia , Encefalite/virologia , Humanos , Itália , Lyssavirus/classificação , Raiva , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/virologia , Zoonoses/virologia
20.
Viruses ; 13(6)2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198809

RESUMO

Rift Valley fever virus (RVFV) causes a zoonotic mosquito-borne haemorrhagic disease that emerges to produce rapid large-scale outbreaks in livestock within sub-Saharan Africa. A range of mosquito species in Africa have been shown to transmit RVFV, and recent studies have assessed whether temperate mosquito species are also capable of transmission. In order to support vector competence studies, the ability to visualize virus localization in mosquito cells and tissue would enhance the understanding of the infection process within the mosquito body. Here, the application of in situ hybridization utilizing RNAscope® to detect RVFV infection within the mosquito species, Culex pipiens, derived from the United Kingdom was demonstrated. Extensive RVFV replication was detected in many tissues of the mosquito with the notable exception of the interior of ovarian follicles.


Assuntos
Culicidae/virologia , Hibridização In Situ , Mosquitos Vetores/virologia , Vírus da Febre do Vale do Rift/genética , Animais , Imuno-Histoquímica , Hibridização In Situ/métodos , Febre do Vale de Rift/transmissão , Febre do Vale de Rift/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...